
Abstract A novel method for in silico selection of flu-
ckicidal drugs is introduced. Two QSARs that permit us
to discriminate between fasciolicide and non-fasciolicide
drugs (the first) and to outline some conclusions about
the possible mechanism of action of a chemical (the sec-
ond) are performed. The first model correctly classified
93.85% of compounds in the training series and 89.5%
of the compounds in the predicting one. This model cor-
rectly classified 87.7, 93.8, 92.2 and 93.9% of com-
pounds in leave-n-out cross validation procedures when
n takes values from 2 to until 6. The model seems to be
stable in around 92% of good classification in leave-n-
out cross validation analysis when n>6. The second
model correctly classified 70% of non-fasciolicide com-
pounds, 85.71% of β-tubulin inhibitors and 100% of pro-
ton ionophores in the training set. This model recognizes
as proton ionophores 100% of any nitrosalicylanilides in
the predicting series. Both models have a low p-level
<0.05. Finally, the experimental assay of six organic
chemicals by an in vivo test permit us to carry out an as-
sessment of the model with a fairly good 100% agree-
ment between experiment and theoretical prediction.

Keywords Drug design · Stochastic matrix · Markov’s
chains · QSAR · Fluckicidal drugs · Linear discriminant
analysis and electronegativity

Introduction

Fasciolosis is a term used to characterize a pathology
that some parasite species cause. These parasites are
known as Flukes. One of the most common naturally oc-
curring flukes is Fasciola hepatica. [1] Fasciola hepati-
ca as well as its tropical counterpart Fasciola gigantic
are widely distributed around the world. Nowadays they
are prevalent in South America, the Caribbean region,
Europe, and Australia. [2] Fasciola hepatica remains
one of the single most important helminthes of livestock
in the U.K. [3]

The infestation of ruminants with F. hepatica causes
a significant economic loss, forecasted to be more than
U.S.$2,000 million in the world agricultural sector 
with approximately 600 million infected animals. [4]
The WHO estimates that 2.4 million people are infected
with fasciolosis and 180 million are at risk of infesta-
tion. [5]

A high prevalence of human fasciolosis has been re-
ported in Bolivia, Cuba and Peru, where this illness is
recognized as a serious health problem. [6, 7] There are
effective strategies for the control of fasciolosis, based
on the use of drugs (fasciolicides) together with epidemi-
ological data. [8] Nevertheless, no fasciolicides have
been marketed since the 1980s. Consequently, we will
have to rely on existing drugs for some time. Thus, we
can expect that there will be a great necessity for safer,
cheaper, and more active fasciolicide compounds in the
near future. [8, 3] On the other hand, computer aided
drug design has emerged as a rational alternative in the
search for novel drugs. [9, 10] Lajiness [11] and Estrada
et al. [12, 13] report a high incidence of the use of novel
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molecular indices to develop QSAR for in silico virtual
drug screening. In this sense the definition of novel mo-
lecular descriptors (see Todeschini and Consonni [14]
for an exhaustive compilation) is a promising field in
medicinal chemistry and veterinarian sciences. Thus, our
aims in the present work are: firstly, to fit a classification
function that permits us to discriminate between fascioli-
cide and non-fasciolicide compounds using the
MARCH-INSIDE and LDA (linear discriminant analy-
sis) methodologies. [15] Secondly, we shall perform an-
other LDA in order to classify organic chemicals accord-
ing to their fasciolicide mechanism of action. This analy-
sis will permit us to obtain some estimation about the
possible mechanism of action of fasciolicides. Finally,
we aim to carry out a primary screening of these com-
pounds and other compounds with similar structure pre-
dicted as non-active and to carry out an experimental
corroboration of the models. We recall here that the ex-
perimental section is aimed at testing experimentally the
predictions of the classification function and is not in-
tended to test the real overall effectiveness of the
screened drugs. These experiments must be considered
only as preliminary screening results.

Materials and methods

Markovian chemicals “in silico” design 
(MARCH-INSIDE)

The MARCH-INSIDE methodology uses Markov’s
chain (MCH) [16] to codify information about the mo-

lecular structure. This procedure considers the external
electron layers of any atom core in the molecule (the va-
lence shell) as states of the MCH. [17] The method uses
as source of molecular descriptors the matrix 1Π, which
has the elements pij. This matrix is called the 1-step elec-
tron-transition stochastic matrix. 1Π is built as a square
table of order n, where n represents the number of atoms
in the molecule. The elements (1pij) of the 1-step elec-
tron-transition stochastic matrix are the transition proba-
bilities:

(1)

where χj is the electronegativity of the atom j, which is
bonded with the atom i. [17] The elements of 1Π (1pij)
are defined to codify information about the electron-
withdrawing strength of atoms to withdraw electrons
from their neighbors in the molecule. The MARCH-
INSIDE molecular descriptors are defined as:

(2)

These molecular descriptors are the traces of the kth-
step-electron-transition stochastic matrices (kΠ). These
matrices are the successive powers of 1Π. The trace (Tr)
is the sum of the main diagonal elements (kpii) of 1Π.
[12, 13] In Table 1 the construction of the 1Π matrix for
nitrilo-acetyl fluoride is exemplified. As could be ob-
served, the pij values are proportional to the electronega-
tivity of the atom aj (the atom that attracts the electrons
of ai). Conversely, the pij values are in inverse relation to
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Table 1 Definition and calcu-
lation of the 1∏ matrix for 
nitrilo-acetyl fluoride and its
molecular structure

a In the definition of the 1∏
matrix, the chemical symbol of
the element is used to indicate
the corresponding electronega-
tivity value. That is: if we write
O it means χ(O), oxygen elec-
tronegativity



the electronegativity of the atoms that “compete” with aj
in order to withdraw electrons from ai. The calculation
of SRπk for any organic or inorganic molecule was imple-
mented in the software MARCH-INSIDE. [18] This soft-
ware has a graphical interface to make it easier to use for
medicinal chemists (see Fig. 1). 

In Eq. (2) Sm represents a specific group of atoms in
the molecule. When Sm contains all the atoms in the mol-
ecule, SRπk(S) becomes a global molecular index and we
write only SRπk. We can calculate different families of
molecular descriptor by selecting different Sm conditions.
For example, if we select only the halogen atoms, we
write Sm=Halogens. Thence, we can use the following
notation SRπk(Halogens) to represent the molecular des-
criptor calculated for this specific condition (Sm=Halo-
gens). The same notation is used for other Sm, e.g.,
SRπk(Alq.) for Sm=Carbon atoms in aliphatic chains.

The 0th-step-self-return-electron-transition probabili-
ties to core ai (0pii) are the values of the main diagonal of
0π=(1Π)0=In. In is the identity matrix of order n. Then 0pii
is, by definition, equal to 1 for any atom. Thence,
SRπ0(Sm) is a count of the number of atoms that obey the
condition Sm in the molecule. Therefore, SRπ0=the total
number of atoms, SRπk(Halogens)=the total number of
halogens atoms and SRπk(Alq.)=the total number of car-
bon atoms in aliphatic chains in the molecule, respec-
tively.

Statistical analysis

Following the previous section, we can try to develop a
simple linear quantitative structure–activity relationship
(QSAR) using the MARCH-INSIDE methodology with
this general formula:

(3)

Two LDAs [19, 20] were carried out. One model was
used to discriminate fasciolicides from non-fasciolicide
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compounds. The other model was used to predict the
mechanism of action of compounds. In both models the
structure is represented by the molecular indices (SRπk).
In the first model the activity is coded by a dummy vari-
able (Factv). This variable indicates either the presence
(Factv=1) or absence (Factv=–1) of biological activity
against F. hepatica or F. gigantica. In the second model,
the activity is codified by a nominal variable (Mecha-
nism). This variable is equal to 1 for compounds having
as mechanism of action the inhibition of the β-tubulin
function. [21, 22] The variable Mechanism is equal to 2
for such chemicals that are known as proton ionophores
(see Martin references [21, 22]) or –1 for non-fasciolici-
de drugs. Chemicals that act against helminthes by a
mechanism of action different from 1 and 2 but are not
necessarily effective as fasciolicides were used in the
predicting series as well as fasciolicides with different or
unknown mechanism of action. In Eq. (3) bk are the co-
efficients of the classification function, determined by
the least squares method as implemented in the LDA
modulus of STATISTICA 99’. [19] Forward stepwise
was fixed as the strategy for variable selection. In both
models we use the first 15 SRπk in the MARCH-INSIDE
and LDA model to develop the QSAR. We also use the
local analogues of the above-mentioned molecular des-
criptors. [15] These local molecular descriptors were cal-
culated selecting halogen atoms or aliphatic chains as
explained above.

The quality of the model was determined by examin-
ing Wilk’s λ statistic, Mahalanobis distance, Fisher ratio
(F) and the corresponding p-level (p(F)) as well as the
percentage of good classification and the proportion be-
tween the cases and variables in the equation. We also
consider the linear discriminant canonical analysis statis-
tics such as: canonical regression coefficient (Rcan), chi-
squared and its p-level (p(χ2)). [19, 20] Calculation of
the percentages of good classification in the external pre-
diction set permits us to carry out the validation of the
models. Validation of the models was corroborated by
means of leave-n-out cross validation procedures. [19,
20] Compounds in the external prediction set were never
used to develop the classification function. Here we con-
sidered a general data set composed of 92 organic chem-
icals. The active compound series was built by joining
together a group of 17 fasciolicide compounds that are
currently in clinical use [3] with 27 nitrosalicylanilides
extracted from an application patent [23] and eight com-
pounds reported as fasciolicides. [24] The inactive com-
pounds were selected from those considered as anthel-
mintics but not fasciolicides [21, 22] and another 21
structurally diverse chemicals reported by Côrba [24] as
non-fasciolicides in primary screening tests.

All compounds were classified by a bracket-based
system (a,b) (see Table 1) as follows: if a=+ it means
that the compound has fasciolicide activity; a=– means a
non-fasciolicide compound, b=t a compound that inhibits
β-tubulin growth, b=H a compound that inhibits proton
flow and b=0 a compound with an unknown mechanism
of action. For example: the compounds that obey the

Fig. 1 Representation of nitrilo-acetyl fluoride in the graphical 
interface of MARCH-INSIDE



condition (+, 0) are fasciolicide drugs with an unknown
mechanism of action.

Fasciolicide effectivity test

An in vivo experiment to measure the chemical effec-
tiveness against F. hepatica was performed. An experi-
mental technique reported in the literature [25] was se-
lected for biological material processing and F. hepatica
egg extraction. Mitterpak et al.’s technique for host
(Lymnaea cubensis) invasion was carried out. [26] After-
wards we followed the steps reported by Olazábal et al.
[27] to obtain the metacercariae. Metacercariae were
conserved in the cold until the in vivo experiment. [25]

Balb/c mice were selected as the biological model.
Healthy Balb/c mice of both sexes and food were pur-
chased from the “Centro Nacional de Animales de 
Laboratorio (CENPALAB)", Cuba. Quarantine, labeling, 
acclimatization and good maintenance conditions of ani-
mals were strictly obeyed. [25, 28] The CBQ organic syn-
thesis laboratory synthesized the compounds A–F, with
98% purity. These chemicals were tested in order to evalu-
ate their effectiveness against F. hepatica according to the
following experimental design. Eight treatment groups
with five mice per group were created. One group (infect-
ed control group) was treated with sunflower oil (adminis-
tration vehicle). The second group was neither infested
nor treated. Each mouse in the six remaining groups was
treated with one of the compounds (A–F). The compounds
were previously diluted in 10 ml of sunflower oil to obtain
a single dose of 200 mg per kg of body weight. The solu-
tions were used immediately after preparation. All the
products were administered by the oral route. All mice re-
ceived 0.2 ml of each solution with a syringe of 1 ml.
Mouse invasion with metacercariae of F. hepatica,
2 weeks old, 14 days before drug administration, was car-
ried out following Côrba et al.’s methodology. [24]

The effectiveness was measured based on the elimina-
tion or not of Fasciola hepatica, in their juvenile stage,
as shown by laboratory diagnostics. From different 
effectiveness indexes [29, 30, 31] the E% index was 
selected. This is a quantitative indicator of effectiveness
introduced by Steward [32] and defined as E%=
[(XC–XT)/XC]×100. Here E% is the percentage of 
effectiveness, XC is the average amount of Fasciola
in the control group and XT is the average amount of
Fasciola in the treated group. We used this index in spite
of the existence of other (more recently defined) effec-
tiveness parameters because it is a direct expression of
effectiveness that we can compare with ∆P%.

Results

Once we perform a random and representative selection
of training set, it can be used to fit the discriminant func-
tion. The model selection was subjected to the principle

of parsimony. Thus, we chose the functions with higher
statistical signification but with as few parameters (bk) as
possible:

MARCH-INSIDE and LDA fasciolicide activity clas-
sification function:

(4)

MARCH-INSIDE and LDA fasciolicide mechanism of
action classification function:

(5)

Here λ is the Wilks statistic, which, for overall discrimi-
nation, takes values in the range from 0 (perfect discrim-
ination) to 1 (no discrimination). The Fisher test permits
us to test the hypothesis of separation of groups with a
probability of error (p-level) p(F)<0.05.

The first model correctly classified 93.85% of the
compounds in the training series, i.e., four misclassifica-
tions in 65 cases, while in the predicting set there were
two errors in 19 cases, that is, 89.5% good classification.
Specifically, the model classified 97.06% of fasciolicide
compounds in the training set correctly and 80% of these
compounds in the predicting set, i.e., two misclassifica-
tions in ten cases. On the other hand, the model correctly
classified 90.32% of non-fasciolicide compounds in the
training set and 100% of these compounds in the predict-
ing set. The names or code of all compounds used to de-
rive the QSAR as well as their predicted activity by both
models are shown in Table 2.

On the other hand, the results obtained after evalua-
tion of external predicting sets with both models are de-
picted in Table 3. The chemical substituents of the en-
coded compounds appear in Table 4 and the respective
molecular skeletons are shown in Fig. 2. 

In Tables 2 and 3 ∆P%=[P(actv)–P(non-actv)]×100,
where P(actv) is the probability that the equation classi-
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(6)

(7)
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Table 3 Predicting set classification results

Predicting set
Name or codea ∆P%b P(–)c P(t)c P(H)c Name or codea ∆P%b P(–)c P(t)c P(H)c

Clorsulon (+,0)d 93.5 0.0 0.0 100.0 fNitroxinyl (+,H) –90.9 0.0 0.0 100.0
fDisofenol (+,0) –61.0 11.8 7.3 80.8 Triclabendazole (+,t) 88.4 27.7 72.2 0.2
D.F.D. (–) –64.5 60.5 39.5 0.0 Morantel (–) –99.3 72.1 27.9 0.0
Levamizole (–) –97.0 31.3 68.7 0.0 Pentamidne (–) –92.5 94.3 5.4 0.3
11 532 (+) 94.6 40.8 57.8 1.3 10 449 (–) –99.4 96.2 3.8 0.0
11 534 (+) 85.2 0.0 0.0 100.0 11 542 (–) –73.4 21.3 78.7 0.0
11 757 (–) –93.0 47.6 52.4 0.0 11 566 (–) –30.3 92.9 7.1 0.0

8 216 (–) –52.4 19.4 80.6 0.0
R1e R2e ∆P%b P(–)c P(t)c P(H)c R1e R2e ∆P%b P(–)c P(t)c P(H)c

F I 95.6 0.0 0.0 100.0 CL Br 100.0 0.0 0.0 100.0
CF3 F 88.3 0.0 0.0 100.0 Br I 99.5 0.0 0.0 100.0
CH3 CF3 71.2 0.0 0.0 100.0 I CF3 74.6 0.0 0.0 100.0

a The chemical substituents of the drugs represented here by a code
are depicted in Table 2 and the respective molecular core in the Fig. 1
b Fluckicidal activity predicted by model 1 (see material and meth-
ods, statistical analysis)
c Percentage of probability with which the drug is predicted as
non-fluckicidal or having the β-tubulin or a proton ionophore
mechanisms of action, respectively; using Eqs. (5), (6) and (7)

d For explanation of the brackets notation see the materials and
method section
e Chemical substituents of the drug with reference to the basic
framework of nitrosalicyl anilides (see Fig. 2)
f Compounds that are misclassified by the fasciolicide/non-
fasciolicide discriminant function

Table 2 Training set classification results

Training set
Name or codea ∆P%b P(–)c P(t)c P(H)c Name or codea ∆P%b P(–)c P(t)c P(H)c

fAlbendazole (+,t)d –98.8 32.0 68.0 0.0 Hexacloroethane (+,0) 99.3 1.5 97.8 0.7
Bitionol (+,0) 97.8 0.0 0.0 100.0 Meniclofolan (+,H) 58.7 0.0 0.0 100.0
Brotianianide (+,H) 94.9 0.0 0.0 100.0 Oxyclozanide (+,H) 99.8 0.0 0.0 100.0
Closantel (+,H) 99.9 0.0 0.0 100.0 Rafoxanide (+,H) 99.6 0.0 0.0 100.0
Dibromsasalam (+,H) 13.4 23.5 10.5 66.0 Tetra-Cl-ethane (+,0) 99.3 1.4 83.6 15.1
Dioxapiramizole(+,0) 99.0 29.1 70.9 0.0 Carbontetrachloride(+,0) 54.5 0.3 99.7 0.0
Hexaclorfeno (+,H) 99.6 0.0 0.0 100.0 Metronidazole (–) –99.8 69.0 30.9 0.0
6-Cloroquine (–) –95.9 96.4 3.6 0.0 Netobimin (–) –79.8 5.9 94.1 0.0
Butamizole (–) –72.3 38.1 61.9 0.0 Oxantel (–) –93.3 68.2 31.8 0.0
Cambendazole (+,t) –70.4 24.2 75.8 0.0 Oxfendazol (–,t) –85.3 37.1 62.9 0.0
Diaveridine (–) –97.8 79.5 20.5 0.0 Pyrantel (–) –99.7 53.0 47.0 0.0
DiEt-carbazide (–) –99.8 92.6 7.4 0.0 Praziquantel (–) –99.5 99.6 0.4 0.0
Fenotiazine (–) –98.8 69.9 30.1 0.0 Thiabendazol (–,t) –98.7 24.8 75.2 0.0
Mebendazole (–) –72.1 61.2 38.8 0.0 11754 (–) –93.2 35.9 64.1 0.0
Methyridine (–) –97.6 23.7 76.3 0.0 11755 (–) –99.6 88.1 11.9 0.0
10448 (–) –81.4 60.6 39.4 0.0 11758 (–) –98.0 48.5 51.5 0.0
10451 (–) –84.0 65.5 34.5 0.0 11780 (–) –100.0 99.6 0.4 0.0
f10477 (–) 10.8 21.4 78.6 0.0 11902 (–) –23.3 38.6 61.4 0.0
11463 (–) –48.6 19.6 80.4 0.0 8217 (–) –35.1 11.3 88.7 0.0
11561 (–) –81.2 91.5 8.4 0.0 8218 (–) –99.0 83.1 16.9 0.0
f11562 (–) 60.9 72.2 27.8 0.0 9298 (–) –99.8 88.0 12.0 0.0
f11564 (–) 77.8 61.1 38.8 0.1 11567 (–) –93.1 90.3 9.7 0.0
R1e R2e ∆P%b P(–)c P(t)c P(H)c R1e R2e ∆P%b P(–)c P(t)c P(H)c

F F 96.0 0.0 0.0 100.0 Br F 100.0 0.0 0.0 100.0
F Cl 97.7 0.0 0.0 100.0 Br Cl 87.1 0.0 0.0 100.0
CH3 Br 95.7 0.0 0.0 100.0 CH3 Br 73.2 0.0 0.0 100.0
F I 95.6 0.0 0.0 100.0 Br I 72.9 0.0 0.0 100.0
CF3 CF3 98.1 0.0 0.0 100.0 Br CF3 99.7 0.0 0.0 100.0
F CH3 88.1 0.0 0.0 100.0 CH3 CH3 83.7 0.0 0.0 100.0
Cl F 87.5 0.0 0.0 100.0 I F 83.7 0.0 0.0 100.0
Cl Cl 73.7 0.0 0.0 100.0 I Cl 74.7 0.0 0.0 100.0
CF3 Br 71.6 0.0 0.0 100.0 CH3 Br 90.6 0.0 0.0 100.0
Cl I 70.6 0.0 0.0 100.0 I I 73.3 0.0 0.0 100.0
Cl CF3 88.7 0.0 0.0 100.0 I CF3

a The chemical substituents of the drugs represented here by a code
are depicted in Table 2 and the respective molecular core in the Fig. 1
b Fluckicidal activity predicted by model 1 (see material and meth-
ods, statistical analysis)
c Percentage of probability with which the drug is predicted as
non-fluckicidal, having the β-tubulin or proton ionophore mecha-
nisms of action, respectively

d For explanation of the brackets notation see the materials and
method section
e Chemical substituents of the drug with reference to the basic
framework of nitrosalicyl anilides (see Fig. 2)
f Compounds that are misclassified by the fasciolicide/non-
fasciolicide discriminant function



fies a compound as active. Conversely, P(non-actv) is
the probability that the model classifies a compound as
non-active. This value (∆P%) takes positive values when
P(actv)>P(non-actv) and negative otherwise. Therefore,
when ∆P% is positive (negative) the compound was
classified as fluckicidal (non-fluckicidal). When ∆P% is
in the range –5<∆P%<5 the compound was considered
as unclassified. [15, 19]

For a more exhaustive testing of the predictive power
of the model, we carried out leave-n-out cross validation

procedures. These validation techniques are implement-
ed in the module for classification trees training in 
Statistica 99’. [19] In this module, the user can select
discriminant-based linear combination splits as the split
method, prune on misclassification error as the stopping
rule and the same prior probabilities as in Eq. (4) and 
obtains this equation as the split rule. Once Eq. (4) is
modeled in the classification trees’ module the folding
parameter of the cross validation can be varied to carry
out the leave-n-out procedure. This model shows 87.7,
93.8, 92.2 and 93.9% of global good classification when
n varies from 2 to 6 in leave-n-by time cross validation
procedures. The model seems to be stabilized at around
92% of good classification when n is >6 (see Fig. 3).

The second model (we report three equations because
this is a three group classification problem) classifies
70% of non-fasciolicide compounds, 85.71% of β-tubulin
inhibitors and 100% of proton ionophores in the training
set. This model recognizes as proton ionophores 100% of
any nitrosalicylanilides in the predicting series. We show
the graphical results of canonical analysis in Fig. 4.

The results of the efficacy in preliminary screening
and the probabilities predicted by the model for six 
experimentally tested compounds supplied by the Chem-
icals Bio-active Center are shown in Table 5.

Discussion

The resistance of flukes F. hepatica and F. gigantica to
fasciolicides has begun. [8, 3] For example, Moll et al.
reported (in the year 2000) resistance of fasciolosis to
triclabendazole, which is usually an effective treatment.
[33] However, we cannot wait until the fasciolicide-
resistance problem becomes uncontrollable to begin 
the development of novel methods for fasciolicide drug
selection. The discriminant function developed here is
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Fig. 2 Basic molecular skeleton of compounds used to develop
the QSAR

Table 4 Chemical substituents
of drugs represented in Table 1
by a code

Chinazolinones Chinoxalines
Codea R Codea R X
10 448 Phenylamine 8 216 H Cl
10 449 Cyclohexylamine 8 217 CH3 Cl
10 451 Morpholine 8 218 H3C–(CH2)3– Cl

9 298 H3C–(CH2)11– NH2

Piperazines (I) Piperazines (II)
Codea R Codea R Codea R
11 534 H 11 562 H3C–(CH2)2– 11 561 H3C–(CH2)2–
11 532 CH3 11 566 H3C–CH2– 11 567 H3C–(CH2)5–
11 567 H3C–(CH2)5–

Pyrimidines (I) Pyrimidines (II)
Codea R1 R2 Codea X
11 758 H H 11 755 CH2
11 780 H Cyclooctyl 11 754 O

11 757 S

Benzimidazolurethans
Codea R Codea R
11 902 (CH3)2N 11 463 –OCH3
11 542 H 10 477 Cl

a This code is the same as 
reported by Côrba [24]



based on a single molecular modeling related methodol-
ogy (MARCH-INSIDE) and facilitates the solution of
this problem. This model did not misclassify any non-
fasciolicide compound in the prediction series and shows

an acceptably low 9.38% of false actives in the training
set. This means that, if we use this model as a guide for
compound selection in a screening program, we can ex-
pect (with 95% probability) that only nine of 100 chemi-
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Table 5 Comparison between experimental and theoretical activities

Codea Structureb E%c ∆P%d P(–)e P(t)e P(H)e

A R1=p-OCH3Phenyl, R2=Cl, R3=CN 88.4 88.6 20.2 79.8 0.0
B R1=Phenyl, R2=Cl, R3=CN 88.4 75.9 24.3 75.7 0.0
C R1=Phenyl, R2=H, R3=SCH3 0 15.6 12.8 87.2 0.0
D R1=p-OCH3Phenyl, R2=H, R3=SCH3 0 –28.3 2.1 97.9 0.0
E R1=Furan, R2=H, R3=SCH3 0 –94.6 24.4 75.6 0.0
F R1=p-CH3Phenyl, R2=H, R3=SCH3 0 –4.0 13.5 86.5 0.0

Fig. 3 Behavior of the global
or total percentage of good
classification in different n-fold
cross-validation analysis

Fig. 4 Graphical representation
of the results of the canonical
analysis

a This code is used by CBQ
b Chemical substituents of the drug refer to the basic framework of
the compounds experimentally assayed here (see Fig. 2)
c Biological activity as measured in the experimental assay

d Posterior probability of activity predicted with Eq. (4)
e Percentage of probability with which the drug is predicted to be
non-fluckicidal or having a β-tubulin or a proton ionophore mech-
anism of action, respectively using Eqs. (5), (6) and (7)



cals submitted to experimental assays will be an ineffec-
tive fasciolicide. There is a major interest in ensuring the
minimization of false active compound selection because
it causes a great loss of time and resources. [12] Classifi-
cation Eq. (4) was fitted using 65 cases (compounds).
Therefore, the seven-fold cross validation procedure is,
approximately, a leave-10%-out cross validation proce-
dure (6.5 cases are 10% of 65 cases). However, as de-
picted in Fig. 3, Eq. (4) has a very stable predictive be-
havior when n is larger than 6 in leave-n-out cross vali-
dation procedures. All the leave-n-out percentages of
good classification are higher than 85%. This value is
considered as a threshold limit to accept a model as 
valid. [9, 13]

A direct inspection of the QSAR reported here shows
us that the number of halogen atoms in the molecule
(SRπ0(Halogen)) increases approximately 2.03 times the
probability that a compound acts as a fasciolicide in spite
of the mechanism of action. This can be explained if we
consider that almost all fasciolicide chemicals studied
here act either as β-tubulin inhibitors or proton iono-
phores. Both mechanism of action require the existence
of electron-withdrawing groups that facilitate either the
dissociation of weak acid groups (such as phenol and
amide) or the activation of electrophilic centers in the
molecule. [21, 22, 34, 35, 36, 37] The second LDA also
agrees with this explanation. On the other hand, the
number of aliphatic chains decreases the biological 
activity. This can be explained because these structural
features facilitate the distribution of the drug to lipoid
tissues, decreasing the possibility of interaction with the
pharmacological target in the cell. [38]

There are some interesting cases that we going to dis-
cuss here. For example, albendazole was misclassified
by Eq. (4) but it was predicted very well to be a β-tubu-
lin mechanism acting drug by the second model. This 
result suggests that results of the two models must be
matched before arriving at any conclusions about the 
activity of a compound.

On the other hand, the mode of action of simple halo-
genated derivatives against F. hepatica is not fully un-
derstood. [39] Hexachloroethane, carbon tetrachloride
and tetrachloroethane are recognized as fluckicidal drugs
but predicted as β-tubulin inhibitors. This is a logical 
result if we consider the great activation that halogen 
atoms cause in the electrophilic reactive centers of these
molecules. [40] Nevertheless, this result may be consid-
ered as preliminary and must be subjected to experimen-
tal corroboration.

The canonical analysis (Fig. 4) detected with a signif-
icant regression coefficient (Rc=0.945, p<0.05) the pres-
ence of three clusters of compounds. The existence of
non-active chemicals (against flukes) that could act by
the β-tubulin mechanism against another helminthes is
an experimental fact that could cause the overlap be-
tween β-tubulin inhibitors and the non-fluckicidal drug
clusters detected in the canonical analysis (see Fig. 4).
Thus, we can conclude that having a mechanism of ac-
tion against helminthes does not exclude the drug from

acting by another mechanism and is not a specific condi-
tion to act specifically against flukes.

Finally, very good agreement between the experimen-
tal fasciolicide activity test and the predicted activities
for six compounds was found. As depicted in Table 5,
compounds A and B are predicted as fluckicidal com-
pounds and have an effectivity greater than 80%. The re-
maining compounds did not show any fluckicidal power
in the biological assay and were predicted as non-active
compounds. Thus, the model shows an overall 100% ef-
ficacy in the experimental assessment.

Conclusions

Virtual screening has emerged as an interesting alterna-
tive to high-throughput screening. [12] Thus, the contin-
uous definition of novel molecular descriptors that could
explain different pharmacological properties by means 
of a QSAR is necessary. [41, 42, 43] Consequently, we
have developed two MARCH-INSIDE and LDA models
that could permit us to predict by fast in silico screening
the fasciolicide activity of chemicals and to outline pre-
liminary conclusions about possible mechanisms of 
action.
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